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1. In the compact metric spaceX a sequence of functions (fn)—not necessarily continuous—converge pointwise
to a continuous function f . Prove that the convergence is uniform if and only if for any convergent sequence
xn → x in X we have

lim
n→∞

fn(xn) = f(x).

Proof. (⇒) Suppose fn → f uniformly and let xn → x in X. Let ε > 0 and find N so that for all n ≥ N
we have ‖fn − f‖∞ < ε/2. Since f is continuous and xn → x, we can enlarge N if necessary so that
|f(xn)− f(x)| < ε/2 for all n ≥ N . For all such n,

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)| ≤ ‖fn − f‖∞ + ε/2 < ε.

Hence fn(xn)→ f(x).

(⇐) Suppose that fn does not converge uniformly. Then there exists ε > 0 and a subsequence xnk
so that

|fnk
(xnk

)− f(xnk
)| ≥ ε

for all k. Passing to a convergent subsequence, assume that (xnk
) converges to some point x ∈ X. Since f

is continuous there exists K > 0 so that for all k ≥ K we have

|f(xnk
)− f(x)| < ε/2.

For all such k we have

|fnk
(xnk

)− f(x)| ≥ |fnk
(xnk

)− f(xnk
)| − |f(xnk

)− f(x)| ≥ ε/2.

Therefore if (xn) is a sequence converging to x and containing (xnk
) as a subsequence, then fn(xn) does

not converge to f(x).

2. Prove that the series

∞∑
n=1

sin2
(

2π
√
n2 + x2

)
converges uniformly on bounded intervals.

Proof. Notice that for any n ∈ N,

sin2
(

2π
√
n2 + x2

)
= sin2

(
2π
√
n2 + x2 − 2πn

)
= sin2

(
2πx2

n
· 1√

1 + (x/n)2 + 1

)
.

For positive numbers t we have sin t ≤ t, whence

sin2
(

2π
√
n2 + x2

)
≤

(
2πx2

n
· 1√

1 + (x/n)2 + 1

)2

≤ π2x4

n2
.

If |x| ≤M , then the series converges uniformly by the Weierstrass M -test.

3. Prove that the series

∞∑
n=1

n2x2e−n
2|x| converges uniformly on R.



Proof. Let fn(x) = n2x2e−n
2|x|. Since fn(0) = 0, fn > 0 on (0,∞) , and fn → 0 as x→∞, there must be

an absolute maximum on [0,∞). The maximum occurs when f ′n(x) = 0, that is, when

0 =
d

dx
ln fn(x) =

2

x
− n2,

so that fn(2/n2) = 4e−2/n2 is the maximum on [0,∞). Since fn is even, |fn| ≤ 4e−2/n2 on R. By the
Weierstrass M -test, the series converges uniformly on R.

4. Determine the domain of convergence for

∞∑
n=1

(
1 +

1

n

)(−1)nn2

xn.

Proof. Denoting the coefficients by an, we have that

lim sup
n→∞

n
√
an = lim sup

n→∞

(
1 +

1

n

)(−1)nn

= lim
n→∞

(
1 +

1

n

)n
= e.

By the Cauchy-Hadamard theorem, the radius of convergence is 1/e. The values x = ±1/e should be
checked separately.

5. Suppose that f, g : [0, 1]→ R are continuous. Prove there exists c ∈ [0, 1] so that∫ 1

0

f(x)g(x) dx = f(c)

∫ 1

0

g(x) dx.

Proof. Since [0, 1] is compact, we can find m,M so that m ≤ f ≤M everywhere on [0, 1]. Thus

m

∫ 1

0

g(x) dx ≤
∫ 1

0

f(x)g(x) dx ≤M
∫ 1

0

g(x) dx.

The problem statement is incomplete at this point; g ≥ 0 must be assumed. If∫ 1

0

g(x) dx = 0

then g ≡ 0 (see problem 7 below), so the problem statement follows. Otherwise, define

y =

(∫ 1

0

g(x) dx

)−1 ∫ 1

0

f(x)g(x) dx.

Since m ≤ y ≤M the intermediate value theorem guarantees f(c) = y for some c in the domain of f .

6. Fix 0 < a < b and a continuous function f : R→ R. Evaluate

lim
ε→0+

∫ bε

aε

f(x)

x
dx.

Proof. Given ε > 0 find cε ∈ [aε, bε] so that∫ bε

aε

f(x)

x
dx = f(cε)

∫ bε

aε

1

x
dx = f(cε) ln(b/a).

If ε→ 0 then cε → 0 and f(cε)→ 0 by the continuity of f . Hence

lim
ε→0+

∫ bε

aε

f(x)

x
dx = f(0) ln(b/a).



7. Suppose that f : [0, 1]→ R is continuous and f ≥ 0. If∫ 1

0

f(x) dx = 0,

prove that f is identically 0.

Proof. If f 6≡ 0 then for some c ∈ (0, 1) we have f(c) > 0. By continuity there exists a neighborhood
(c− ε, c+ ε) upon which f > f(c)/2. Therefore∫ 1

0

f(x) dx ≥
∫ c+ε

c−ε
f(c)/2 dx = εf(c) > 0.

8. Suppose that f : [0, 1]→ R is continuous and that for each n ≥ 0,∫ 1

0

xnf(x) dx = 0.

Prove that f is identically 0.

Proof. By linearity of the integral we see that∫ 1

0

p(x)f(x) dx = 0

for any polynomial p. Using the Weierstrass approximation theorem we can find polynomials pn that
converge to f uniformly on [0, 1]. Uniform convergence on a bounded interval allows the interchange of
limit and integral, so we have

0 = lim
n→∞

∫ 1

0

pn(x)f(x) dx =

∫ 1

0

f(x)2 dx.

But f2 is continuous, nonnegative, and integrates to 0. So f ≡ 0.

9. Prove that

∫ ∞
0

sin(x2) dx converges.

Proof. It suffices to show that the integral on [1,∞) converges. A substitution of u = x2 gives∫ ∞
1

sinu

2
√
u
du.

Let b > 1. Integrating by parts gives∫ b

1

sinu

2
√
u
du =

cos 1

2
− cos b

2
√
b
−
∫ b

1

cosx

4u3/2
dx.

This last integral converges absolutely as b→∞:∫ ∞
1

∣∣∣ cosx

4u3/2

∣∣∣ dx ≤ ∫ ∞
1

1

4x3/2
dx <∞,

and cos b/2
√
b→ 0 as b→∞. Therefore taking b→∞ gives∫ ∞

1

sin(x2) dx =

∫ ∞
1

sinu

2
√
u
du =

cos 1

2
−
∫ ∞
1

cosx

4u3/2
dx,

and the integral converges.

10. Evaluate the limits



(a) lim
n→∞

n
√
n!

n

(b) lim
n→∞

 1

n

n∑
k=1

(ln k)
2 −

(
1

n

n∑
k=1

ln k

)2


Proof. (a) Let L = lim
n→∞

n
√
n!

n
. Then

lnL = lim
n→∞

1

n

(
n∑
k=1

ln k

)
− lnn = lim

n→∞

1

n

n∑
k=1

ln(k/n) =

∫ 1

0

lnx dx = −1,

so L = 1/e.

(b) Note that

1

n

n∑
k=1

(ln k)
2

=
1

n

n∑
k=1

(
ln2(k/n) + 2 ln(k/n) lnn+ ln2 n

)
=

1

n

n∑
k=1

ln2(k/n) +
2 lnn

n

n∑
k=1

ln(k/n) + ln2 n.

Also notice that

ln2 n−

(
1

n

n∑
k=1

ln k

)2

=

(
lnn+

1

n

n∑
k=1

ln k

)(
lnn− 1

n

n∑
k=1

ln k

)

=

(
2 lnn+

1

n

n∑
k=1

ln(k/n)

)(
− 1

n

n∑
k=1

ln(k/n)

)

= −2 lnn

n

n∑
k=1

ln(k/n)−

(
1

n

n∑
k=1

ln(k/n)

)2

Whew. Altogether we have

lim
n→∞

 1

n

n∑
k=1

(ln k)
2 −

(
1

n

n∑
k=1

ln k

)2
 = lim

n→∞

 1

n

n∑
k=1

ln2(k/n)−

(
1

n

n∑
k=1

ln(k/n)

)2


=

∫ 1

0

ln2 x dx−
(∫ 1

0

lnx dx

)2

= 2− (−1)2,

so the limit is 1.

11. Define the Dirichlet function f : R→ R by

f(x) =

{
0 if x 6∈ Q
1 if x ∈ Q

Prove the following:

(a) The function f is discontinuous at every point.

(b) The function f is not Riemann integrable on any bounded interval.

Proof. (a) Given a rational x find irrationals xn → x. Then f(xn) → 0 6= 1 = f(x). Similarly, given
irrational x find rationals xn → x. Then f(xn)→ 1 6= 0 = f(x). Hence f is continuous nowhere.



(b) Given an interval [a, b] (with a < b) and any partition x0 < x1 < · · · < xn thereof, consider the
Riemann sum

S =

n∑
k=1

f(ck)(xk − xk−1),

where ck ∈ (xk−1, xk). If we take each ck rational, then the sum telescopes and S = b− a. If we take
each ck irrational then S = 0. No matter how small the mesh, there exist two Riemann sums which
differ by b− a > 0. Thus f is not integrable.

12. Define the Riemann ruler function f : R→ R by

f(x) =

{
0 if x 6∈ Q
1/q if x = p/q with p, q relatively prime integers and q > 0

Prove the following:

(a) The function f is continuous at the irrationals and discontinuous at the rationals.

(b) The function f is Riemann integrable on every bounded interval.

(c) For any a < b we have ∫ b

a

f(x) dx = 0.

Proof. (a) Let x be rational and find irrationals xn → x. Then f(xn) → 0 6= f(x). Hence f is not
continuous at any rational. Let x be irrational and fix ε > 0. Define the set S to be those rationals
y ∈ (x− 1, x+ 1) with denominator less than 1/ε. Since S is finite, there is δ > 0 so that every point
in S is at least δ distance from x. Whenever y ∈ R satisfies |x − y| < δ, we have y 6∈ S and hence
|f(x)− f(y)| < ε. Therefore f is continuous at x.

(b) Fix a bounded interval I, let ε > 0 and consider the set S of rationals in I whose denomiators are less
than |I|/ε. Note that S is finite and that throughout I \ S we have f ≤ ε/|I|. Given any partition of
I, we can refine it to include the set S. Any Riemann sum then has the form∣∣∣∣∣

n∑
k=1

f(ck)(xk − xk−1)

∣∣∣∣∣ ≤ ε

|I|

n∑
k=1

(xk − xk−1) = ε.

This shows that f is Riemann integrable and that the integral is zero. (Remark: the Lebesgue condition
for Riemann integrability is that f is integrable if and only if its set of discontinuities has measure
zero. The ruler function has a countable number of discontinuities and hence is integrable)

(c) (see part b)

13. A continuous function K : [0, 1]× [0, 1]→ R satisfies |K(x, y)| < 1 for all (x, y) ∈ [0, 1]× [0, 1]. Prove there
is a unique continuous f : R→ R so that

f(x) +

∫ 1

0

K(x, y)f(y) dy = ex.

Proof. Define the linear operator T : C[0, 1]→ C[0, 1] by

(Tf)(x) = ex −
∫ 1

0

K(x, y)f(y) dy.

Note that K is continuous on the compact set [0, 1]2; therefore there exists a k < 1 so that |K(x, y)| ≤ k
everywhere. So if we take any two functions f, g ∈ C[0, 1],

‖Tf − Tg‖∞ =

∥∥∥∥∫ 1

0

K(x, y)(f(y)− g(y)) dy

∥∥∥∥
∞
≤ k‖f − g‖∞.

Thus T is a contraction. Since C[0, 1] is complete, T has a unique fixed point.



14. Let (fn) be a sequence of real-valued uniformly bounded equicontinuous functions on a metric space X. If
we define

gn(x) = max{f1(x), f2(x), . . . , fn(x)},

prove that the sequence (gn) converges uniformly.

Proof. The problem is incorrect as written. Here’s a counterexample. Let X = R and define f0(x) to be a
continuous function which is 1 on (−∞, 0], zero on [1,∞), and linear on [1, 2]. Define fn(x) = f0(x − n).
Since f0 is uniformly continuous, the sequence of translates (fn) is equicontinuous. Further, the sequence
is uniformly bounded, with each fn taking values in [0, 1]. Note that gn = max{f1 . . . , fn} = fn → 1
pointwise, but not uniformly; one can find points x ∈ R for which (gn(x)) stays zero for an arbitrarily long
time before converging to 1.

Now let’s assume that X is compact. We claim that (gn) is an equicontinuous sequence of functions on X.
Let ε > 0 and find δ > 0 so that whenever d(x, y) < δ we have |fn(x) − fn(y)| < ε for any n. Suppose
d(x, y) < δ and let n ∈ N be arbitrary. Without loss of generality assume gn(x) ≥ gn(y) and find k ≤ n so
that gn(x) = fk(x). Then gn(y) ≥ fk(y) and

|gn(x)− gn(y)| = gn(x)− gn(y) = fk(x)− gn(y) ≤ fk(x)− fk(y) < ε.

This proves the claim. Next note that (fn) is uniformly bounded, whence g(x) = supn fn(x) is defined and
bounded on X. Clearly, g1 ≤ g2 ≤ · · · ≤ g and gn → g pointwise. This implies that (gn) is a uniformly
bounded equicontinuous family, hence it has a uniformly convergent subsequence by the Arzelá-Ascoli
theorem. This subsequence must uniformly converge to the pointwise limit g. We can show that the entire
sequence converges uniformly to g. Let ε > 0 and find k > 0 so that ‖gnk

− g‖∞ < ε. For all n ≥ nk we
have gnk

≤ gn ≤ g, so
‖gn − g‖∞ ≤ ‖gnk

− g‖∞ < ε,

proving uniform convergence, as desired.

15. Suppose that K is a nonempty compact subset of a metric space X. Given x ∈ X prove there exists a
point z ∈ K so that

d(x, z) = dist(x,K).

Proof. Fix x ∈ X and find a sequence (zn) in K so that d(x, zn) → dist(x,K). Since K is compact there
is a convergent subsequence znk

→ z ∈ K. Then we have

dist(x,K) = lim
k→∞

d(x, znk
) = d(x, z).

16. Prove every compact metric space has a countable dense subset.

Proof. We only need total boundedness of the space. For each n ∈ N find a finite (1/n)-net Bn. The set
∪nBn is countable (since each Bn is finite). Furthermore, it is dense; given a point x in the space and
ε > 0, we can find n > 1/ε and a point in Bn which is at most ε away from x.

17. Evaluate lim
n→∞

∫ 1

0

(
1 +

x

n

)n
dx with justification.

Proof. The functions fn(x) = (1 + x/n)n converge pointwise to the continuous function f(x) = ex on
[0, 1]. Furthermore, it can be shown that the sequence (fn) is monotone. Dini’s theorem implies that the
convergence is uniform, so we can take the limit inside of the integral:

lim
n→∞

∫ 1

0

(
1 +

x

n

)n
dx =

∫ 1

0

ex dx = e− 1.



18. Show that
1

1 + x2
− 1

2 + x2
+

1

3 + x2
− · · ·

converges uniformly on R but never absolutely.

Proof. For each fixed x the series is an alternating harmonic series, which converges, but not absolutely.
Since the terms are monotonically decreasing to zero in absolute value, the alternating series test tells us
that ∣∣∣∣∣

∞∑
k=n

(−1)k−1

k + x2

∣∣∣∣∣ ≤ 1

n+ x2
≤ 1

n
.

Since the tail of the series converges to zero at a rate independent of x, the convergence is uniform.

19. (a) Prove the polynomials of even degree are dense in the space of continuous functions C[0, 1].

(b) Is this still true on C[−1, 1]?

Proof. (a) Fix f ∈ C[0, 1]. On [0, 1] the function
√
x is continuous, so for any ε > 0 we can find a

polynomial p with |p(x)− f(
√
x)| < ε throughout [0, 1]. That is, |p(x2)− f(x)| < ε throughout [0, 1].

The polynomial p(x2) is even, so we are done.

(b) No, it is not true. Suppose there is an even polynomial p with |p(x)−x| < 1 throughout [−1, 1]. Then
0 < p(1) < 2, yet −2 < p(−1) < 0. An even polynomial must have p(−1) = p(1), so such a p cannot
exist.

20. Suppose that f : R → R is integrable on every interval of the form [0, A] for A > 0 and that f → 1 as
x→∞. Prove that

lim
s→0+

s

∫ ∞
0

e−stf(t) dt = 1.

Proof. Note that

lim
s→0+

s

∫ ∞
0

e−stf(t) dt = lim
s→0+

s

∫ ∞
0

e−st(f(t)− 1) dt+ 1,

so if we instead assume that f → 0 as x→∞, then we wish to show the limit is zero.

Let ε > 0. Find A > 0 so that for all x ≥ A we have |f(x)| ≤ ε. On one hand,∣∣∣∣s∫ ∞
A

e−stf(t) dt

∣∣∣∣ ≤ ε ∫ ∞
A

se−st dt = εe−sA < ε.

On the other hand, ∣∣∣∣∣s
∫ A

0

e−stf(t) dt

∣∣∣∣∣ ≤ s
∫ A

0

f(t) dt = Cεs

for some constant Cε depending only on ε. Therefore

lim sup
s→0+

∣∣∣∣s∫ ∞
0

e−stf(t) dt

∣∣∣∣ ≤ lim sup
s→0+

(Cεs+ ε) = ε.

Since ε was arbitrary, the limit is zero, as desired.

21. Define, for x, y > 1

f(x, y) =
x− y
1− xy

.

For each fixed y, note that f(x, y)→ 1 as x→ 1. Is the convergence uniform in y?



Proof. Suppose the convergence were uniform in y. Then we can find δ > 0 so that for any y > 1 and
1 < x < 1 + δ we have ∣∣∣∣ x− y1− xy

− 1

∣∣∣∣ < 1.

Since y is arbitrary, we can take y → 1 to find∣∣∣∣x− 1

1− x
− 1

∣∣∣∣ ≤ 1,

or 2 ≤ 1. This contradiction implies the convergence is not uniform.

22. (a) Suppose that (ank) is a doubly-indexed series of positive terms. Prove that∑
k

∑
n

ank =
∑
n

∑
k

ank,

where ∞ is allowed.

(b) Give an example of a sequence for which the above equation fails.

Proof. (a) Denote S1 =
∑
k

∑
n ank and S2 =

∑
n

∑
k ank. A sum

∑
n ank at constant k is called a row

sum, while a sum
∑
k ank at constant n is a column sum. With this terminology we can proceed.

To begin, assume that a single row or column sum is divergent. Without loss of generality, say∑
k aNk =∞ for some N . Then certainly S2 =∞ as well. Given M > 0 truncate the series so that

K∑
k=1

aNk ≥M.

Then we have that

S1 =
∑
k

∑
n

ank ≥
K∑
k=1

N∑
n=1

ank ≥
K∑
k=1

aNk ≥M.

Since M is arbitrary, S1 =∞ as well.

Next, we assume that each row and column is a convergent series, but either S1 or S2 is infinite anyway.
Without loss of generality, say S1 =∞. Given M > 0 find K so that

K∑
k=1

∑
n

ank ≥M.

Since each row sum converges, we can truncate each to within 1/K of its full sum; that is, find N so
that ∑

n

ank −
N∑
n=1

ank ≤
1

K
.

for each k = 1, 2, . . . ,K. It follows that

S2 =
∑
n

∑
k

ank ≥
N∑
n=1

∑
k

ank ≥
N∑
n=1

K∑
k=1

ank =

K∑
k=1

N∑
n=1

ank ≥M − 1.

Since M is arbitrary, S2 =∞ as well.

Finally, we assume that S1 and S2 are both finite. Let ε > 0 and find K1 so that

S1 −
K1∑
k=1

∑
n

ank < ε.

Since each row sum converges, we can truncate them to within ε/K1; that is, find N1 so that

N1∑
n=1

ank <
ε

K1



for each k = 1, 2 . . . ,K1. Then

S1 −
K1∑
k=1

N1∑
n=1

ank < 2ε.

Notice that this relation is preserved if we increase either K1 or N1 since all terms are positive.
Similarly we can find K2, N2 so that

S2 −
N2∑
n=1

K2∑
k=1

ank < 2ε.

Now let K ′ = max{K1,K2} and N ′ = max{N1, N2} to find that

Sj −
N ′∑
n=1

K′∑
k=1

ank < 2ε

for both j = 1, 2. Hence |S1 − S2| < 4ε. As ε was arbitrary, we must have S1 = S2, as desired.

(b) For n ≥ 0 let ann = 1, an(n+1) = −1, and all other ank = 0. Then

∑
n

ank =

{
1 if k = 0

0 else

and
∑
k ank = 0 for all n. Therefore∑

k

∑
n

ank = 1 6= 0 =
∑
n

∑
k

ank.

23. Let K : [0, 1]× [0, 1]→ R be continuous. Define T : C[0, 1]→ C[0, 1] to be the linear operator

Tf(x) =

∫ 1

0

K(x, y)f(y) dy.

Prove that T maps bounded subsets of C[0, 1] into precompact ones.

Proof. By Arzelá-Ascoli it suffices to show that T maps uniformly bounded sets to uniformly bounded
and equicontinuous ones. Assume that S ⊂ C[0, 1] is uniformly bounded and M > 0 is chosen so that
‖f‖∞ ≤ M for all f ∈ S. Since K is continuous on the compact set [0, 1]2 there is a constant A so that
|K| ≤ A everywhere. Thus

‖Tf(x)‖∞ =

∥∥∥∥∫ 1

0

K(x, y)f(y) dy

∥∥∥∥
∞
≤ AM,

so that T (S) is uniformly bounded. Now let ε > 0. The continuous function K has a compact domain,
hence is uniformly continuous. Find δ > 0 so that for any |x1 − x2| < δ and any y we have

|K(x1, y)−K(x2, y)| < ε/M.

Given any f ∈ S and |x1 − x2| < δ we have

|Tf(x1)− Tf(x2)| =
∣∣∣∣∫ 1

0

(K(x1, y)−K(x2, y))f(y) dy

∣∣∣∣ ≤ ε

M

∣∣∣∣∫ 1

0

f(y) dy

∣∣∣∣ ≤ ε.
So the family T (S) is equicontinuous, as desired.

24. (a) Let f be a continuous periodic function with some period t. Show that its set of translates

F = {f(x− t) : t ∈ R}

is compact in C(R).



(b) A function is called almost periodic if its set of translates is precompact. Prove the set of almost
periodic functions is a closed subalgebra of C(R).

Proof. (a) Given a sequence (f(x − an)) of translates we wish to find a convergent subsequence. Note
that we can reduce each an modulo t and assume each an ∈ [0, t]. Since [0, t] is compact, there is a
convergent subsequence (ank

) converging to some a ∈ [0, t].

Fix ε > 0. Note that f is uniformly continuous on [0, t] and hence on R; thus we can find δ > 0 so
that whenever |x − y| < δ we have |f(x) − f(y)| < ε. Find N so that for any n ≥ N it follows that
|ank

− a| < δ. For all such n and arbitrary x ∈ R,

|f(x− ank
)− f(x− a)| < ε.

This proves that f(x− ank
)→ f(x− a) uniformly as k →∞.

(b) First, a word of warning/clarification: the topology of C(R) is more complicated than that of C[0, 1]
since continuous functions on R need not have finite supremum norms. We call C(R) a Fréchet space—
its topology is generated by a family of “semi-norms.” Here’s all we need: define fn → f in C(R) to
mean supK |fn(x)− f(x)| → 0 for every compact set K ⊂ R.

We need to prove that the sum and product of almost periodic functions are almost periodic and
that almost periodicity is preserved by uniform convergence on compact sets. Given almost periodic
functions f, g ∈ C(R) define

F(f) = {f(x− t) : t ∈ R}
and similarly for F(g). We need to show that a sequence in F(f +g) has a Cauchy subsequence—that
is, a subsequence which is uniformly Cauchy in C(K) for any compact set K ⊂ R. Given a sequence
(fn + gn) in F(f + g), pass to a subsequence (fnk

+ gnk
) so that (fnk

) is Cauchy. Pass to a smaller
subsequence so that (gnk

) is Cauchy as well. On any compact set,

‖fnk
+ gnk

− fnj − gnj‖∞ ≤ ‖fnk
− fnj‖∞ + ‖gnk

− gnj‖∞ → 0

as k, j →∞. Thus (fnk
+ gnk

) is Cauchy.

Now assume that (fngn) is a sequence in F(fg); we wish to find a Cauchy subsequence. As before,
pass to a subsequence so that each of (fnk

) and (gnk
) is Cauchy. Then on any compact set

‖fnk
gnk
− fnj

gnj
‖∞ ≤ ‖fnk

gnk
− fnk

gnj
‖∞ + ‖fnk

gnj
− fnj

gnj
‖∞

≤ ‖gnk
− gnj

‖∞‖fnk
‖∞ + ‖fnk

− fnj
‖∞‖gnj

‖∞.

Recall that Cauchy sequences are bounded; thus we can find M > 0 so that ‖fnk
‖∞, ‖gnj

‖∞ ≤M for
all k, j. Therefore

‖fnk
gnk
− fnj

gnj
‖∞ ≤M‖gnk

− gnj
‖∞ +M‖fnk

− fnj
‖∞ → 0

as k, j →∞. We conclude that (fnk
gnk

) is a Cauchy subsequence.

Finally, we need to show that almost periodicity is preserved under uniform convergence on compact
sets. We need to be careful with notation; let fn → f in the aforementioned sense, with each fn almost
periodic. Consider a sequence (f(x− tn)) of translates of f . We wish to find a Cauchy subsequence.
Consider instead the sequence (f1(x− tn)); we can pass to a Cauchy subsequence. Take the first term
of the subsequence of (tn) and denote it s1. Passing to a further subsequence (still with s1 at the
front) we can assume that (f2(x− tn)) is Cauchy as well. Denote the second term of this subsequence
by s2. Proceed inductively this way, building a subsequence s1, s2, s3, . . . of (tn). For each k, we see
that (fk(x− sn)) is a Cauchy sequence; we’ll show that (f(x− sn)) is Cauchy as well.

Let ε > 0 and fix an underlying compact set. Find n so that ‖fn − f‖∞ < ε/3. Find M > 0 so that

‖fn(x− sk)− fn(x− sj)‖∞ < ε/3

for all k, j ≥M . For all such k, j we have

‖f(x− sk)− f(x− sj)‖∞
≤ ‖f(x− sk)− fn(x− sk)‖∞ + ‖fn(x− sk)− fn(x− sj)‖∞ + ‖fn(x− sj)− f(x− sj)‖∞
< ε.

Thus we’ve found a Cauchy subsequence and are done.


